

Deep Learning for Data Science DS 542

https://dl4ds.github.io/fa2025/

Measuring Performance and Generalization

Plan for Today

- MNIST1D dataset model and performance
- Noise, bias, and variance
- Reducing variance
- Reducing bias & bias-variance trade-off
- Double descent
- Choosing hyperparameters

MNIST1D

Scaling down Deep Learning

Sam Greydanus ¹

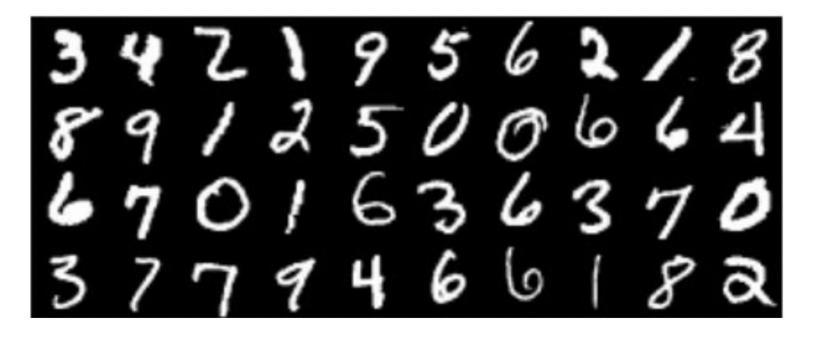
"A large number of deep learning innovations including <u>dropout</u>, <u>Adam</u>, <u>convolutional</u> <u>networks</u>, <u>generative adversarial networks</u>, and <u>variational autoencoders</u> began life as MNIST experiments. Once these innovations proved themselves on small-scale experiments, scientists found ways to scale them to larger and more impactful applications."

S. Greydanus, "Scaling down Deep Learning." arXiv, Dec. 04, 2020. doi: 10.48550/arXiv.2011.14439.

MNIST Dataset

- 28x28x1 grayscale images
- 60K Training, 10K Test
- "Is to Deep Learning what fruit flies are to genetics research"







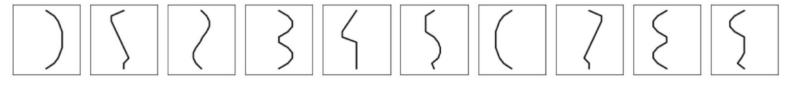
But poorly differentiates model performance:

Model Type	Accurac	
	у	
Logistic Regression	94%	
MLP	99+%	
CNN	99+%	

MNIST 1D Dataset

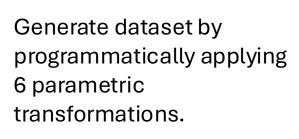
Original MNIST examples

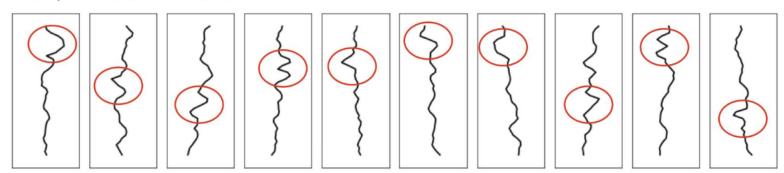
Represent digits as 1D patterns



Fixed, 1-D, length-12 templates for each of 10 digit classes

Pad, translate & transform

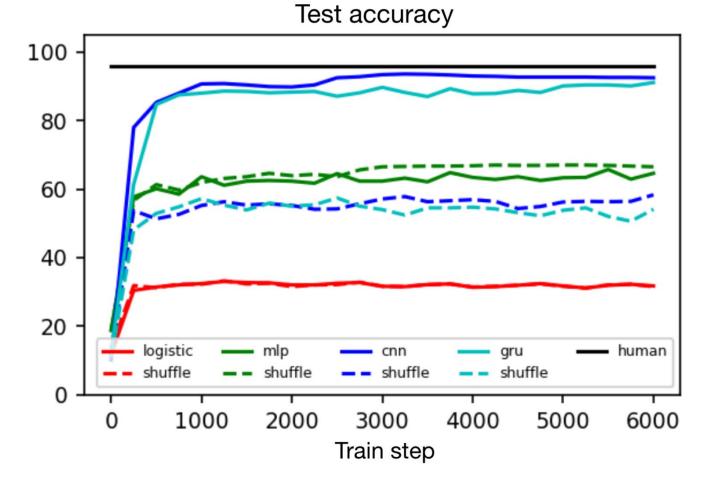




E.g. pad, shear, translate, correlated noise, i.i.d. noise, interpolation.

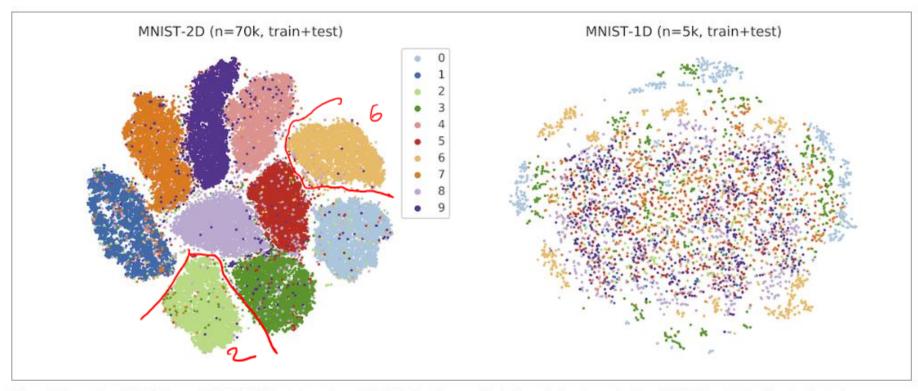
MNIST 1D

Differentiates performance of different model types much more than MNIST



Dataset	Logistic regression	Fully connected model	Convolutional model	GRU model	Human expert
MNIST	94 ± 0.5	> 99 68 ± 2 68 ± 2	> 99	> 99	> 99
MNIST-1D	32 ± 1		94 ± 2	91 ± 2	96 ± 1
MNIST-1D (shuffled)	32 ± 1		56 ± 2	57 ± 2	$\approx 30 \pm 10$

Visualizing MNIST and MNIST-1D with tSNE

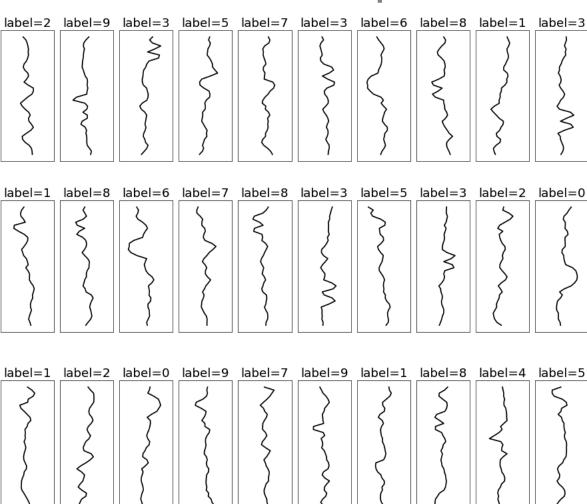


Visualizing the MNIST and MNIST-1D datasets with tSNE. The well-defined clusters in the MNIST plot indicate that the majority of the examples are separable via a kNN classifier in pixel space. The MNIST-1D plot, meanwhile, reveals a lack of well-defined clusters which suggests that learning a nonlinear representation of the data is much more important to achieve successful classification. Thanks to Dmitry Kobak for making this plot.

MNIST1D Train and Test Set

Dataset Samples

- 1D, Length 40 samples
- 4,000 training samples
- 1,000 test samples (80/20 split)



Network

- 40 inputs
 - 10 outputs
- Two hidden layers
 - 100 hidden units each

SGD with batch size 100, learning rate 0.1

6000 steps (?? Epochs)

```
# choose cross entropy loss function
loss function = torch.nn.CrossEntropyLoss()
# construct SGD optimizer and initialize learning rate and momentum
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)
# object that decreases learning rate by half every 10 epochs
scheduler = StepLR(optimizer, step_size=10, gamma=0.5)
# load the data into a class that creates the batches
data loader = DataLoader(TensorDataset(x train,y train), batch size=100, shuffle=True)
```

. . .

```
# inference – just choose the max
pred_train = model(x_train)
pred test = model(x test)
, predicted train class = torch.max(pred train.data, 1)
, predicted test class = torch.max(pred test.data, 1)
```

model = torch.nn.Sequential(

torch.nn.Linear(40, 100),

torch.nn.Linear(100, 100),

torch.nn.Linear(100, 10))

torch.nn.ReLU(),

torch.nn.ReLU(),

```
Layer (type:depth-idx) Output Shape
                                          Param #
_____
Sequential
                          [1, 10]
 -Linear: 1-1
                         [1, 100]
                                          4,100
 -ReLU: 1-2
                         [1, 100]
 -Linear: 1-3
                         [1, 100]
                                          10,100
 -ReLU: 1-4
                         [1, 100]
                         [1, 10]
  -Linear: 1-5
                                          1,010
```

Total params: 15,210 Trainable params: 15,210 Non-trainable params: 0

Total mult-adds (Units.MEGABYTES): 0.02

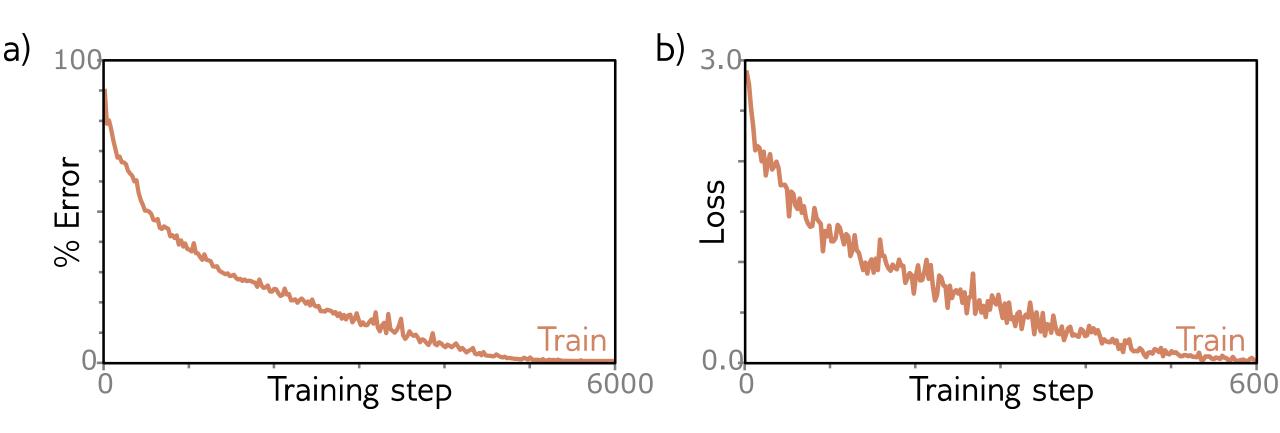
Input size (MB): 0.00

Forward/backward pass size (MB): 0.00

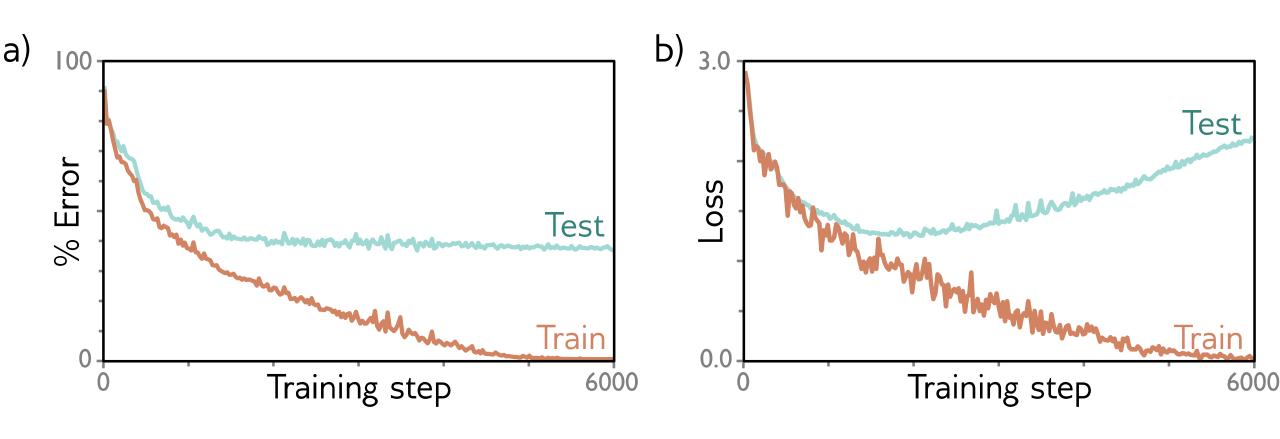
Params size (MB): 0.06

Estimated Total Size (MB): 0.06

Results



Need to use separate test data

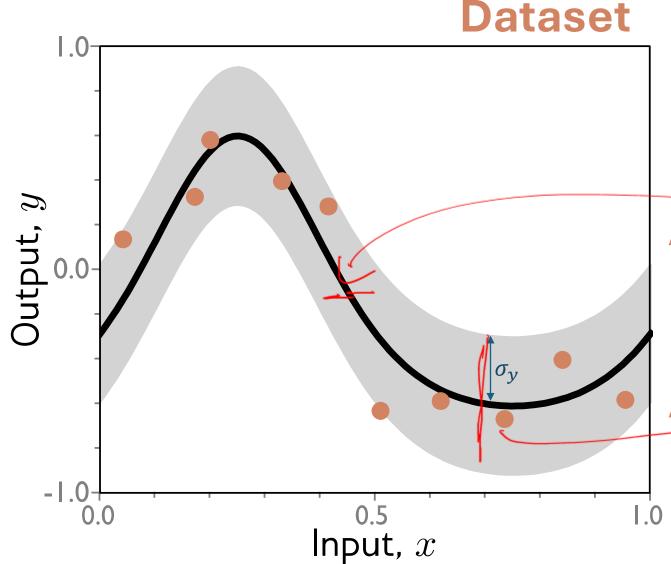


The model has not generalized well to the new data

Any Questions?

- MNIST1D dataset model and performance
- Noise, bias, and variance
- Reducing variance
- Reducing bias & bias-variance trade-off
- Double descent
- Choosing hyperparameters

Regression example with Toy Model



"True" function:

$$y = e^{\sin(2\pi x)} \int_{-\infty}^{\infty} dy$$

Add small uniform noise to x:

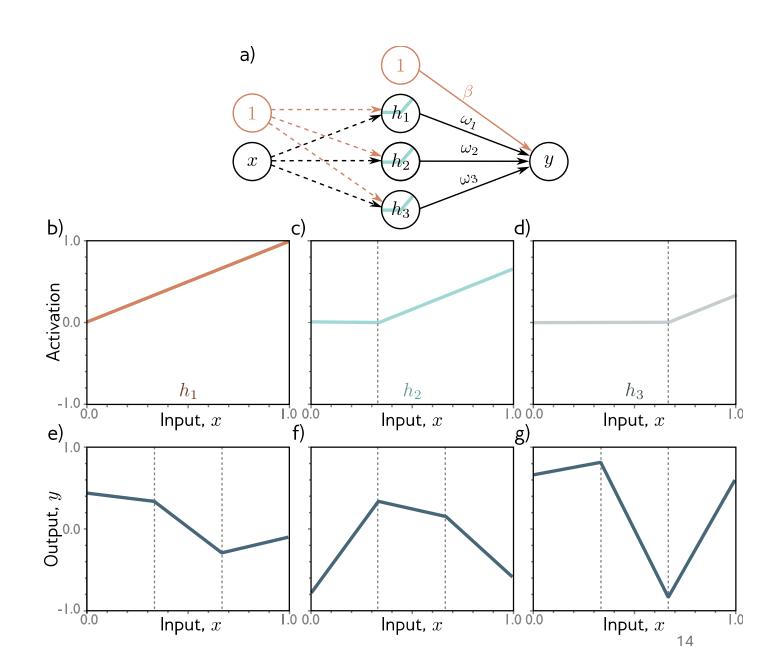
$$x = x + \mathcal{U}(\pm 1/\text{num_data})$$

Add small Gaussian noise to y:

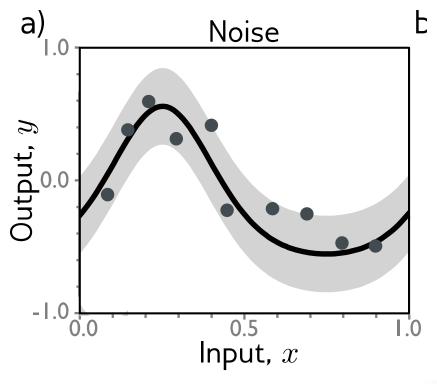
$$y = y + \mathcal{N}(0, \sigma_y)$$

Toy model

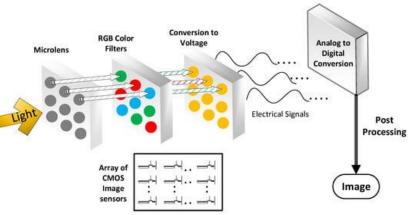
- D hidden units
- First layer fixed so "joints" divide interval evenly, e.g. 0, 1/D, 2/D, ..., (D-1)/D
- Second layer trained
- But... now linear in h
 - so convex cost function
 - can find best solution in closed-form
- A piecewise linear model with D regions.

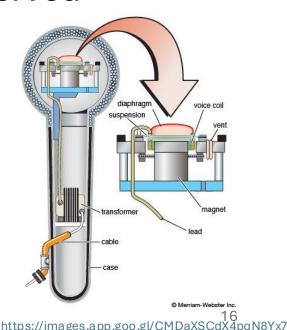


Three possible sources of error: noise, bias and variance

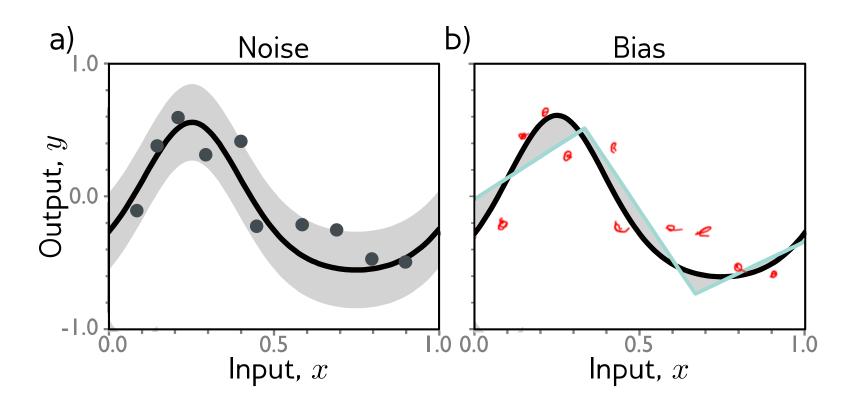


- Genuine stochastic nature of the underlying model
- Noise in measurements, e.g. from sensors
- Some variables not observed
- Data mislabeled





https://images.app.goo.gl/2PuBhaFpfdL9Pyjb8

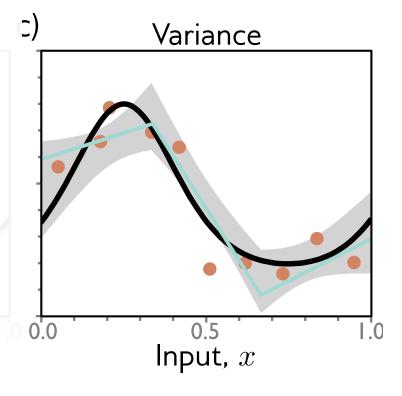


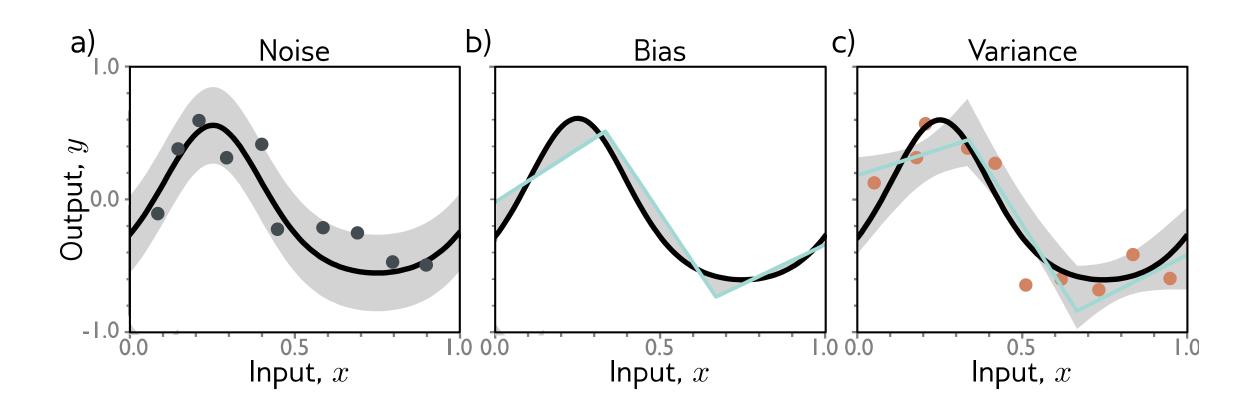
Bias occurs because the model lacks precision or capacity to accurately match the underlying function.

E.g. optimal fit with 3 hidden units and 3 line segments

No way to distinguish change in the true underlying function from noise in the data.

Variability every time we capture training data and also from stochastic learning algorithms.





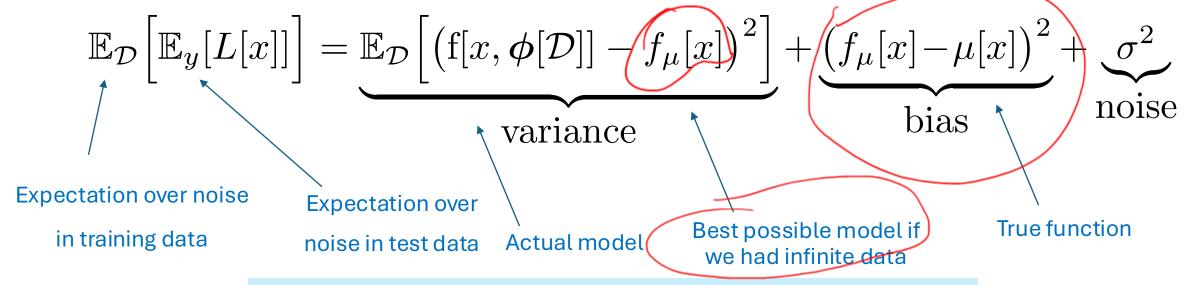
Least squares regression only For derivation see Section 8.2.2 in UDL.

$$L[x] = (f[x, \phi] - y[x])^2$$

We can show that:

$$\mathbb{E}_y[L[x]] = (f[x, \phi] - \mu[x])^2 + \sigma^2$$

And then:

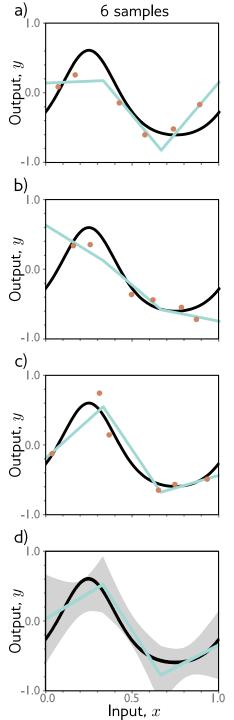


More complex interactions between noise, bias and variance in more complex models.

Any Questions?

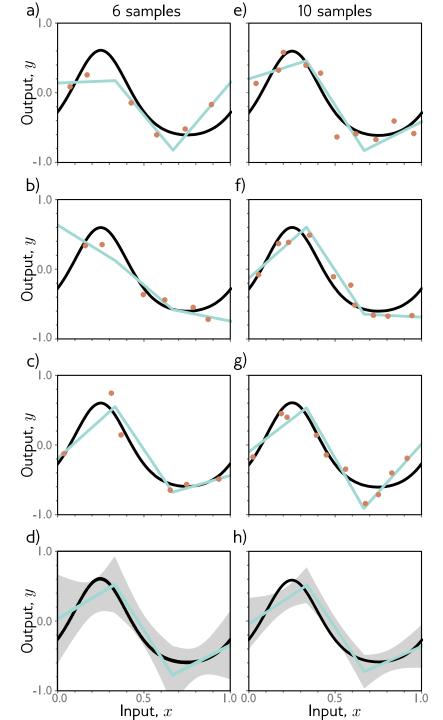
- MNIST1D dataset model and performance
- Noise, bias, and variance
- Reducing variance
- Reducing bias & bias-variance trade-off
- Double descent
- Choosing hyperparameters

Variance



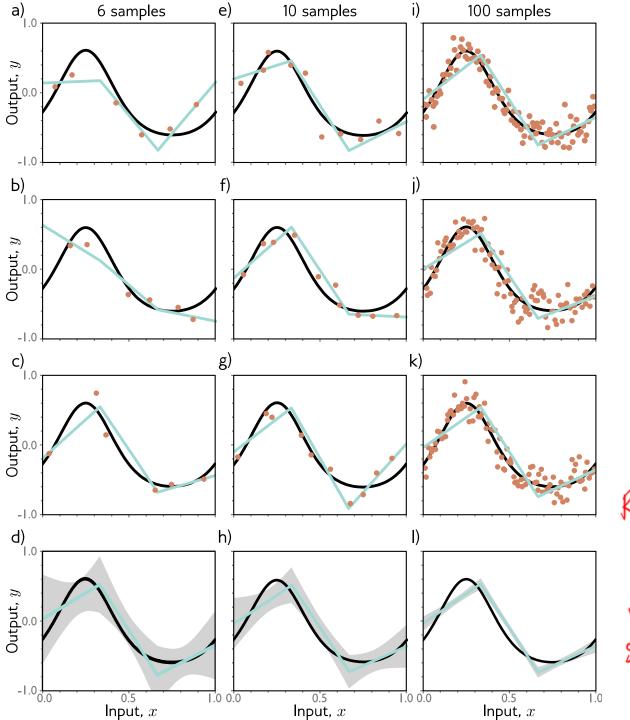
When measuring (capturing) 6 different data samples with a fixed model (e.g. 3 hidden units), we get different optimal fits every time.

Variance



Can reduce variance by adding more samples

Variance



Can reduce variance by adding more samples

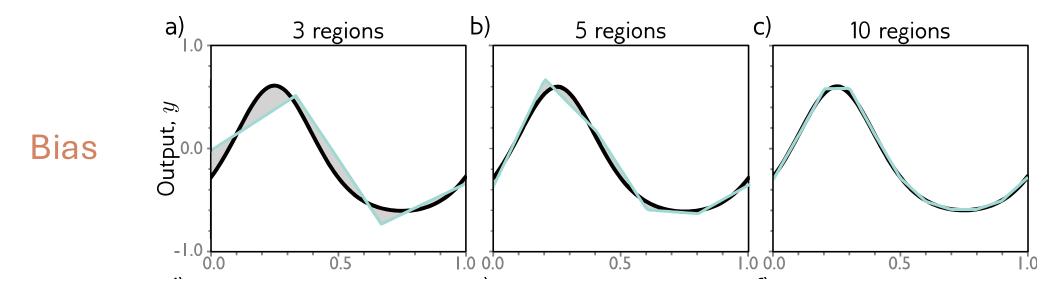
Resulting model
approaches fm.
variance > 0,
still have error from
bias thoise 24

Any Questions?

- MNIST1D dataset model and performance
- Noise, bias, and variance
- Reducing variance
- Reducing bias & bias-variance trade-off
- Choosing hyperparameters
- Double descent

Reducing bias

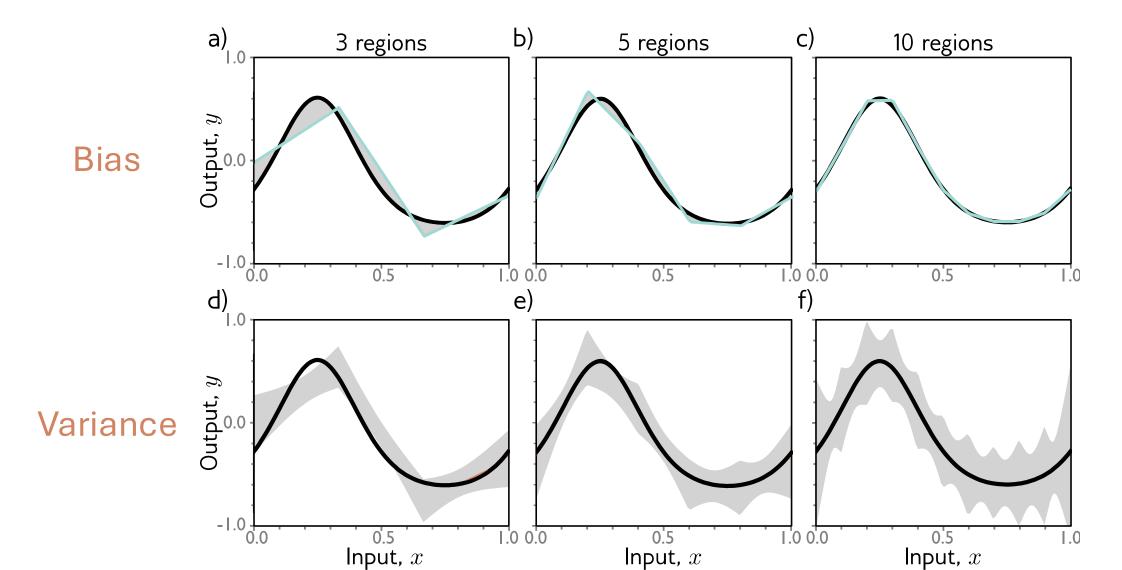
(example with the true function)



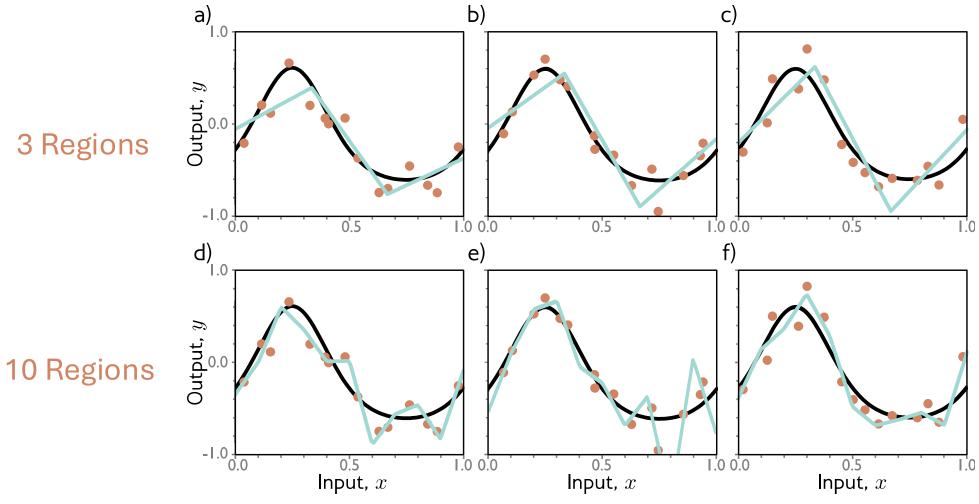
We can reduce bias by adding more model capacity.

In this case, adding more hidden units.

Reducing bias Increases variance!!

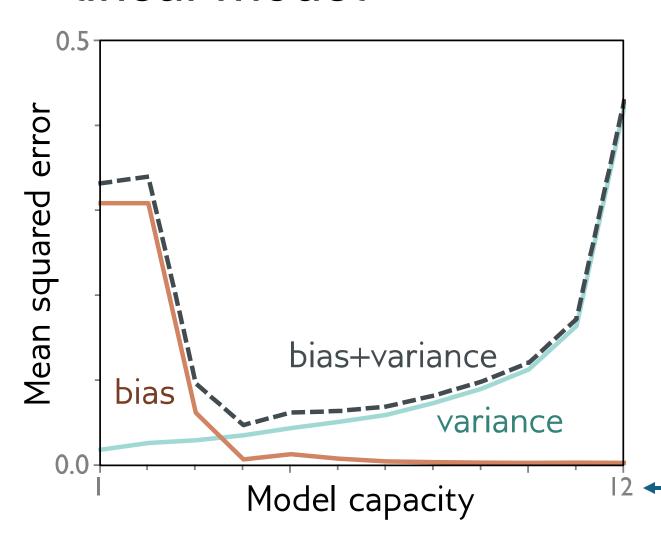


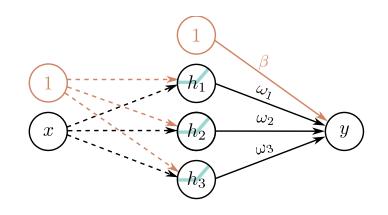
Why does variance increase? Overfitting



Describes the training data better, but not the true underlying function (black curve) Many ways to fit a sample of 15 data points

Bias and variance trade-off for the simple linear model





$$\mathbb{E}_{\mathcal{D}}\Big[\mathbb{E}_{y}[L[x]]\Big] = \underbrace{\mathbb{E}_{\mathcal{D}}\Big[\big(f[x,\phi[\mathcal{D}]] - f_{\mu}[x]\big)^{2}\Big]}_{\text{variance}} + \underbrace{\big(f_{\mu}[x] - \mu[x]\big)^{2}}_{\text{bias}} + \underbrace{\sigma^{2}}_{\text{noise}}$$

Number of hidden units

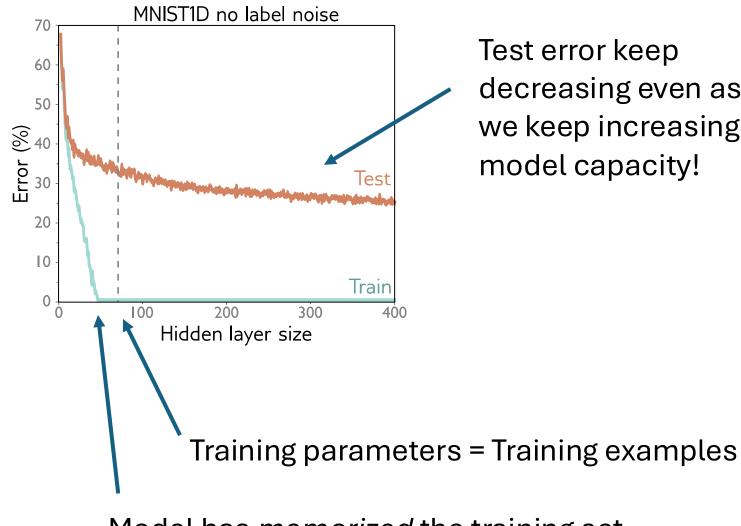
But does picking model capacity to minimize bias & variance hold for more complex data and models?

Any Questions?

- MNIST1D dataset model and performance
- Noise, bias, and variance
- Reducing variance
- Reducing bias & bias-variance trade-off
- Double descent
- Choosing hyperparameters

Train and Test Error versus # of Hidden Layers

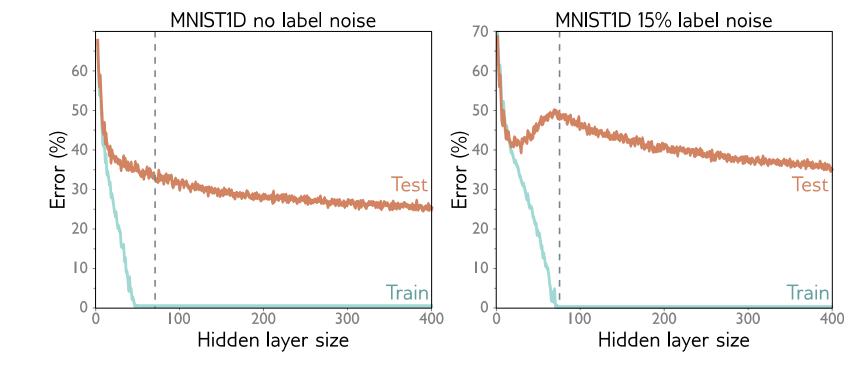
- 10,000 training examples
- 5,000 test examples
- Two hidden layers
- Adam optimizer
- Step size of 0.005
- Full batch
- 4000 training steps



Test error keep decreasing even as we keep increasing model capacity!

Model has *memorized* the training set Why do we say that?

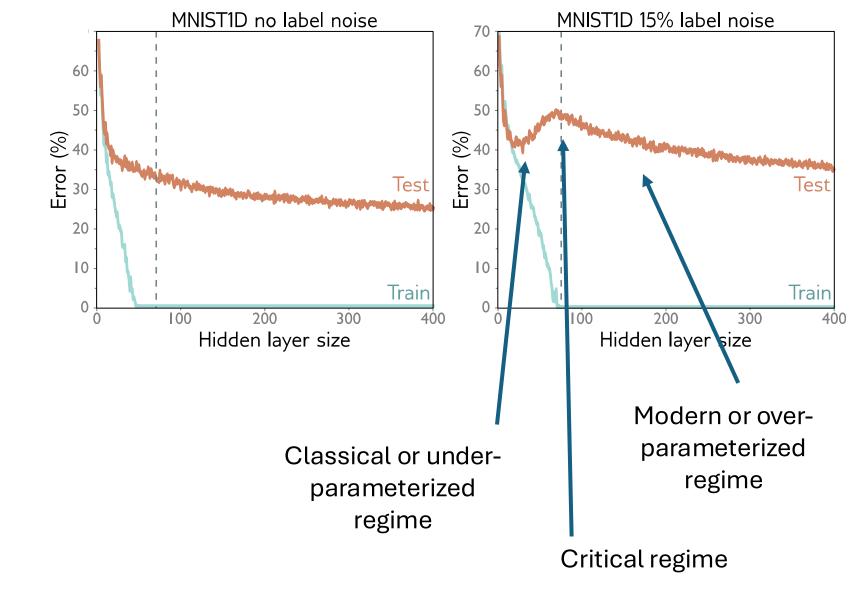
Now randomize 15% of the training labels



Now we see what looks like biasvariance trade-off as we increase capacity to the point where the model fits training data.

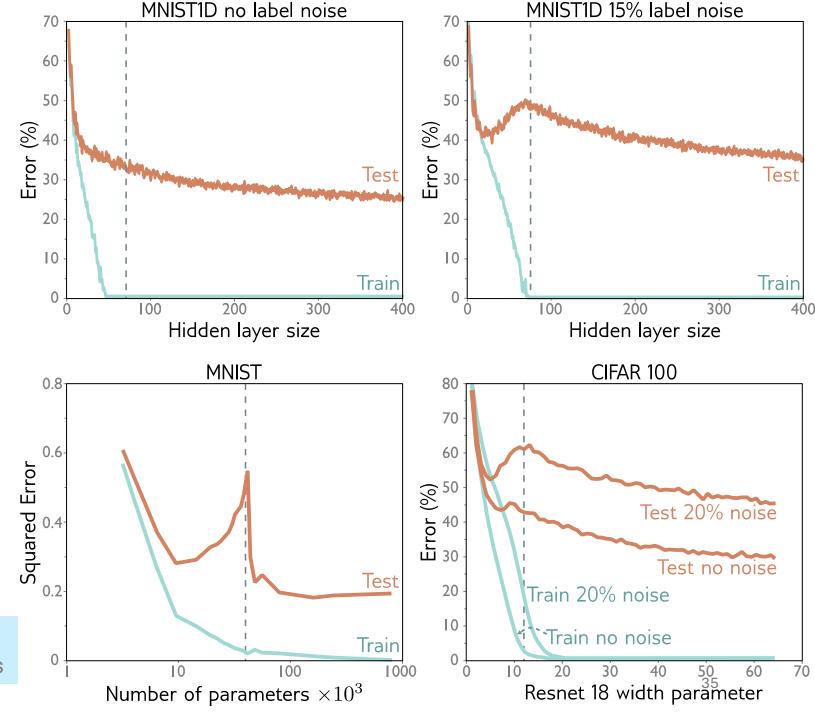
Reminder: vertical dashed line is where: # training parameters = # training samples

Double Descent



Reminder: vertical dashed line is where: # training parameters = # training samples

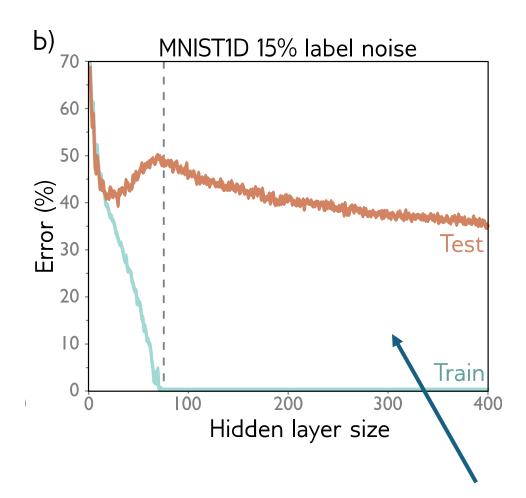
Same phenomenon shows up on MNIST and CIFAR100

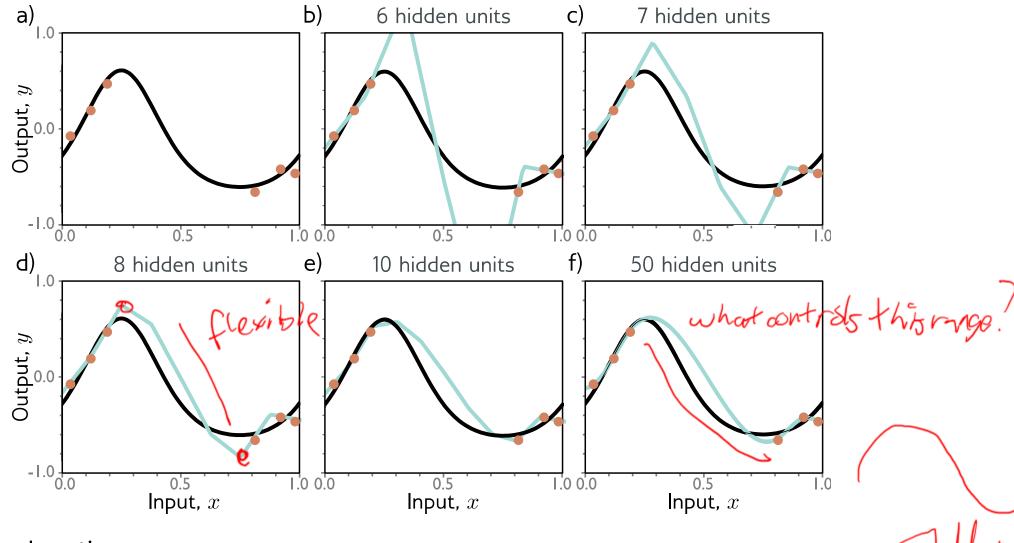


Reminder: vertical dashed line is where: # training parameters = # training samples

Double Descent

- Note that training loss is very close to zero.
- Whatever is happening isn't happening at training data points
- Model never sees test set during training
- Must be happening between the data points??



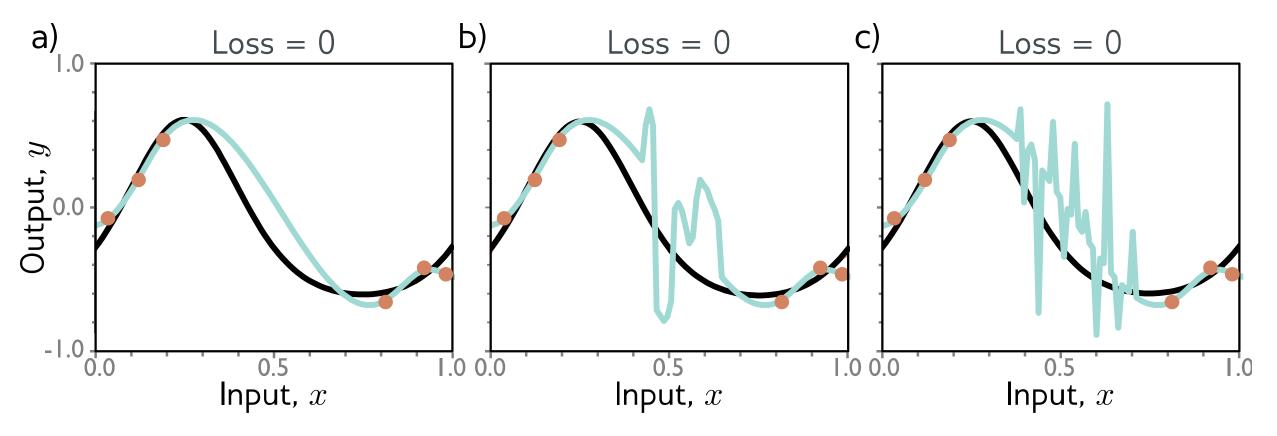


Potential explanation:

- can make smoother functions with more hidden units
- being smooth between the datapoints is a reasonable thing to do

But why?

Next Week: How to bias for smoothness?



- All of these solutions are equivalent in terms of loss.
- Why should the model choose the smooth solution?
- Tendency of model to choose one solution over another is inductive bias

- MNIST1D dataset model and performance
- Noise, bias, and variance
- Reducing variance
- Reducing bias & bias-variance trade-off
- Double descent
- Choosing hyperparameters

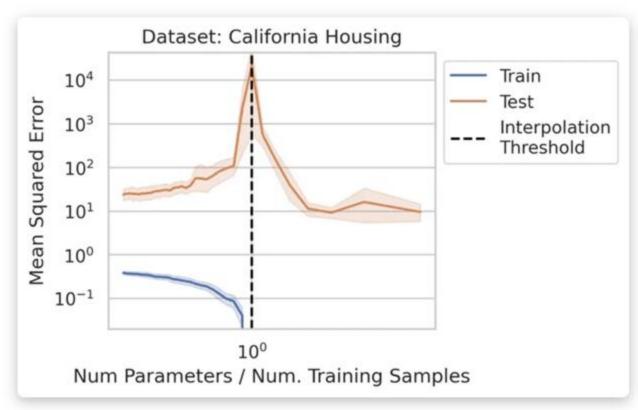
Choosing hyperparameters

- Don't know bias or variance
- Don't know how much capacity to add
- How do we choose capacity in practice?
 - Or model structure
 - Or training algorithm
 - Or learning rate
- Third data set validation set
 - Train models with different hyperparameters on training set
 - Choose best hyperparameters with validation set
 - Test once with test set

- MNIST1D dataset model and performance
- Noise, bias, and variance
- Reducing variance
- Reducing bias & bias-variance trade-off
- Double descent
- Choosing hyperparameters

Double Descent Demystified

• Linear regression too?

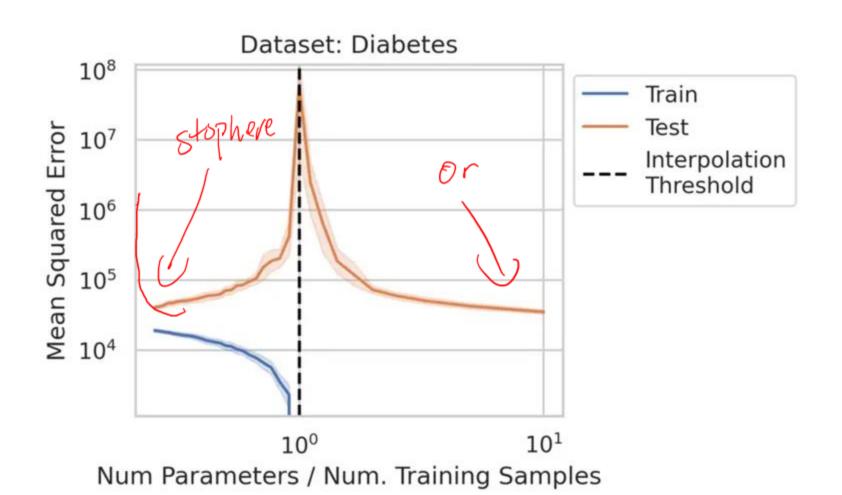


https://iclr-blogposts.github.io/2024/blog/double-descent-demystified/

XZy3

Manufactured polynomial columns from original columns

Reproduced with Classic Data Sets



Double Descent Test Setup

- Used polynomial features to generate arbitrary numbers of features
- When more polynomial features than training samples, regression has multiple parameters for exact fit.
 - Pick parameters minimizing a norm ← this is a regularization.

Rough Explanation for Double Descent

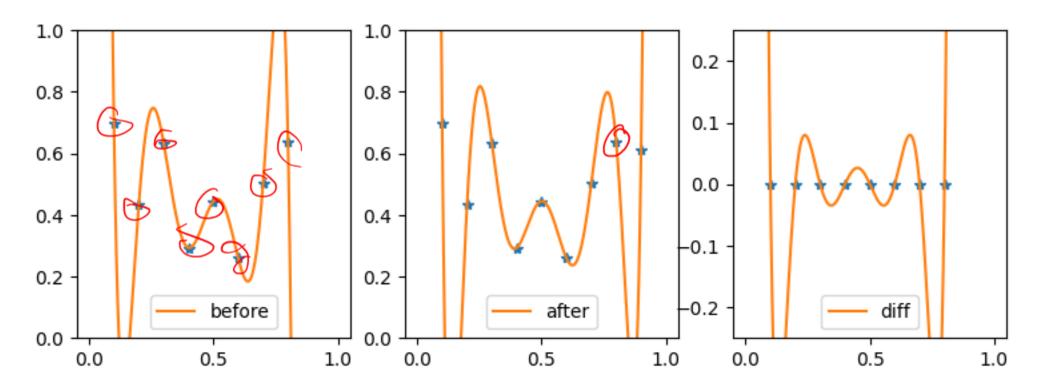
- 1. Parameters << samples
 - Model can only fit overall trends. Cannot fit individual points particularly well.
 - Training and test loss improve with more parameters.
- 2. Parameters ~ samples & over fitting b/c trying to interpolate.

 Model can harely / not quite fit all training.
 - Model can barely / not quite fit all training points.
 - Contortions are likely.
 - Detailed analysis says "singular values" a lot. Read the paper if curious.
- 3. Parameters >> samples
 - Model can easily fit all training points.
 - Lots of freedom to make parameter norms smaller.
 - Some intuitive and proven connections to better generalization from smaller norms.

If $y = 3x_1^2 + 2x_1^3 x_2^4$ Cols $x_1, x_2, x_1^2, x_1x_1, x_2^2$

Re: Contortions are Likely

Original slide title: What Happens When You Add Another Point?



???

Theoretical Results generalization is opposed to fast output changes w/small input changes Takeaways from extra readings? Big weights make later values change later

- For Valid Generalization the Size of the Weights is More Important than the Size of the Network
- Train faster, generalize better: Stability of stochastic gradient descent

output change X T (sizefactor per layer)

Watch for these themes as we go through regularization examples.

???

Regularization

- Why is there a generalization gap between training and test data?
 - Overfitting (model describes statistical peculiarities)
 - Model unconstrained in areas where there are no training examples
- Regularization = methods to reduce the generalization gap
- Technically means adding terms to loss function
- But colloquially means any method (hack) to reduce gap between training and test data

Regularization

- Explicit regularization
- Implicit regularization
- Early stopping
- Ensembling
- Dropout
- Adding noise
- Transfer learning, multi-task learning, self-supervised learning
- Data augmentation